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a b s t r a c t

The classical problem of steady Darcy free convection in a square cavity filled with a porous medium has
been extended to the case of a bidisperse porous medium (BDPM) by following the recent model
proposed by Nield and Kuznetsov [D.A. Nield, A.V. Kuznetsov, Natural convection about a vertical plate
embedded in a bidisperse porous medium, Int. J. Heat Mass Transfer 51 (2008) 1658–1664] and Rees et al.
[D.A.S. Rees, D.A. Nield, A.V. Kuznetsov, Vertical free convective boundary-layer flow in a bidisperse
porous medium, ASME J. Heat Transfer 130 (2008) 1–9]. The transformed partial differential equations in
terms of the dimensionless stream function and temperature are solved numerically using a finite-
difference method for some values of the governing parameters when the Rayleigh number Ra is equal to
102 and 103. Results are presented for the flow field with streamlines, temperature field by isotherms and
heat transfer by local and mean Nusselt numbers are presented for both the f- and p-phases. It is found
that the most important parameters that influence the fluid flow and heat transfer are the inter-phase
heat transfer parameter H and the modified thermal conductivity ratio parameter g.

� 2009 Elsevier Masson SAS. All rights reserved.
1. Introduction

The problem of dealing with flow through a porous medium
under the influence of temperature differences is one of the most
considerable and contemporary subjects. This is because it finds
many applications in geophysics, geothermal energy and tech-
nology, etc. The practical interest in convective heat transfer in
porous media has greatly increased over the last several decades
and this is due to the wide range of applications, such as thermal
energy storage, geothermal energy utilization, petroleum reser-
voirs, chemical catalytic convectors, storage of grain, pollutant
dispersion in aquifers, buried electrical cables, ceramic radiant
porous burners used in industrial firms as efficient heat transfer
devices, food industry, etc. The fundamental nature and the
growing volume of work in this area are amply documented in the
books by Nield and Bejan [1], Ingham and Pop [2], Vafai [3], Pop and
Ingham [4], Bejan et al. [5], de Lemos [6] and Vadasz [7].

Recently, Nield and Kuznetsov [8], and Rees et al. [9] have
considered the problem of steady free convection boundary layer
flow over a vertical surface embedded in a bidisperse porous
medium (BDPM). Also, these equations were applied by Nield
and Kuznetsov [10,11] to forced convection in a channel and by
þ40 264 591906.
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Nield and Kuznetsov [12] to the Horton–Rogers–Lapwood
problem (the paradigmatic problem for natural convection in an
enclosed region). A very good description of the heat transport
properties and basic equations of BDPM can be found in an
excellent chapter by Nield and Kuznetsov [13] in the book by
Ingham and Pop [2].

A bidisperse porous medium is composed of clusters of large
particles that are agglomerations of small particles. Thus, a BDPM
may be looked at as a standard porous medium in which the solid
phase is replaced by another porous medium, whose temperature
may be denoted by Tp if local thermal equilibrium is assumed
within each cluster. We can then talk about the f-phase (the mac-
ropores) and the p-phase (the remainder of the structure). There-
fore, in this paper attention will be focused on the steady free
convection flow in a square enclosure filled with a bidisperse
porous medium (BDPM). Constant temperatures are imposed along
the vertical walls, while the upper and lower walls of the enclosure
are assumed adiabatic. The dimensionless transport equations for
continuity, momentum and energy are solved numerically. It is
worth mentioning to this end that the classical problem of free
convection flow in a square cavity filled with a standard porous
medium (local thermal equilibrium, LTE) has been studied by many
researchers, while that of a square cavity filled with a porous
medium using the local thermal non-equilibrium (LTN) flow model
has been studied by Baytas and Pop [14]. However, as it was pointed
out by Nield and Kuznetsov [8] there is a significant lack of progress
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Nomenclature

c specific heat at constant pressure, J/kg K
g acceleration due to gravity, m/s2

G negative of the applied pressure gradient, kg/m2 s2

h inter-phase heat transfer coefficient (incorporating the
specific area)

H dimensionless inter-phase heat transfer parameter
k thermal conductivity, W/m K
K permeability, m2

Kr dimensionless permeability ratio parameter
L width of the square cavity, m
Nu local Nusselt number
Nu average Nusselt number
p pressure, Pa
P dimensionless pressure
qw wall heat flux, W/m2

Ra Rayleigh number for a porous medium
T temperature, K
TF volume average of the temperature over the fluid, K
T0 characteristic temperature, K
u filtration velocity along x-axis, m/s
U dimensionless velocity along X-axis
v filtration velocity along y-axis, m/s
V dimensionless velocity along Y-axis

x coordinate measured along the lower horizontal wall, m
X dimensionless coordinate in the horizontal direction
y coordinate measured along the hot vertical wall, m
Y dimensionless coordinate in the vertical direction

Greek symbols
b dimensionless modified thermal capacity ratiobb volumetric thermal expansion coefficient of the fluid, K�1

3 porosity within the p-phase
g dimensionless modified thermal conductivity ratio
f volume fraction of the f-phase
m fluid viscosity, kg/m s
q dimensionless temperature
rF density of the fluid, kg/m3

sf dimensionless f-phase momentum transfer parameter
2 coefficient for momentum transfer between the two

phases, kg/m3 s
s dimensionless parameter

Subscripts
c cold wall
f fracture phase (macrophase)
h hot wall
p porous phase (micropores)
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in the area of BDPM. To the best of our knowledge the present
problem of free convection in a square cavity filled with a BDPM has
not been considered before so that the presented results are new
and original.
Th Tc

g

x

y TF /   y = 0∂ ∂

TF /   y = 0∂ ∂

Fig. 1. Physical model and coordinate system.
2. Basic equations

Consider the steady free convection flow and heat transfer
inside a square cavity of width L which is filled with a BDPM porous
medium as shown in Fig. 1. It is assumed that the temperature of
the right hand wall of the cavity is Th and the temperature of the left
wall is Tc. Following Nield and Kuznetsov [8], we recognize that in
a BDPM the fluid occupies all of the f-phase and a fraction of the p-
phase. Thus, the basic equations for a BDPM are, see Nield and
Kuznetsov [8],

vuf

vx
þ

vvf

vy
¼ 0 (1a)

vup

vx
þ vvp

vy
¼ 0 (1b)

TF ¼
fTf þ ð1� fÞ3Tp

fþ ð1� fÞ3 (2)

vp
vx
¼ � m

Kf
uf � 2

�
uf � up

�
(3a)

vp
vx
¼ � m

Kp
up � 2

�
up � uf

�
(3b)

vp
vy
¼ � m

Kf
vf � 2

�
vf � vp

�
þ rF gbbðTF � TNÞ (3c)
vp
vy
¼ � m

Kp
vp � 2

�
vp � vf

�
þ rF gbbðTF � TNÞ (3d)

fðrcÞf vf $VTf ¼ fkf V2Tf þ h
�

Tp � Tf

�
(4a)

ð1� fÞðrcÞpvp$VTp ¼ ð1� fÞkpV2Tp þ h
�

Tf � Tp

�
(4b)

where x is the coordinate measured along the lower wall of the
cavity and y is the coordinate measured along the left hand wall of
the cavity, u and v are the filtration velocity components along the x
and y axes, respectively, v is the filtration velocity vector, T is the



Table 1
Accuracy test for Ra¼ 103, H¼ 1, g ¼ 1, sf ¼ 1, b ¼ 10, s ¼ 0:625, Kr¼ 0.001 and
f ¼ 0:5.

Nodes jf ð0:25;0:25Þ jpð0:25;0:25Þ qf ð0:25;0:25Þ qpð0:25;0:25Þ

21� 21 �14.7609 �0.0044 �0.2069 0.2331
41� 41 �15.1395 �0.0045 �0.2101 0.2328
81� 81 �15.2400 �0.0046 �0.2114 0.2328
161� 161 �15.2583 �0.0046 �0.2121 0.2327
Richardson extrapolation �15.2644 �0.0046 �0.2123 0.2328

Table 2
Comparison of the mean Nusselt number Nu for a square cavity filled with a regular
(monodisperse, qf ¼ qp) porous medium with results from the open literature at
Ra¼ 103.

References Nu

Bejan [16] 15.800
Cross et al. [17] 13.470
Goyeau et al. [18] 13.470
Baytas and Pop [19] 14.060
Saeid and Pop [20] 13.726
Manole and Lage [21] 13.637
Varol et al. [22] 13.564
Present 13.664 (13.754, Richardson extrapolation)
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temperature, p is the pressure, K is the permeability, g is the
magnitude of the acceleration due to gravity, c is the specific heat at
constant pressure, h is inter-phase heat transfer coefficient, f is the
volume fraction of the f-phase, m is the dynamic viscosity, rF is the
fluid density, 2 is the coefficient for momentum transfer between
the two phases, 3 is the porosity within the p-phase and bb is the
volumetric thermal expansion coefficient of the fluid. The subscript
f denotes the fracture phase (macropores) and p denotes the porous
phase (micropores), respectively.

We define now the following dimensionless variables

ðx; yÞ ¼ LðX; YÞ;
�

uf ; vf

�
¼

kf

ðrcÞf L

�
Uf ;Vf

�
;
�
up; vp

�

¼ kp

ðrcÞpL

�
Up;Vp

�
p ¼

kf m

ðrcÞf Kf
P;

Tf ¼ T0 þ ðTh � T0Þqf ; Tp ¼ T0 þ ðTh � T0Þqp (5)

where T0 ¼ ðTh þ TcÞ=2. Substituting (5) into Eqs. (1)–(4), we
obtain the following dimensionless equations:

vUf

vX
þ

vVf

vY
¼ 0 (6a)

vUp

vX
þ vVp

vY
¼ 0 (6b)

vqF

vX
¼ s

vqf

vX
þ ð1� sÞvqp

vX
(7)

vP
vX
¼ �

�
1þ sf

�
Uf þ sf bUp (8a)

vP
vX
¼ �b

�
sf þ

1
Kr

�
Up þ sf Uf (8b)

vP
vY
¼ �

�
1þ sf

�
Vf þ sf bVp þ RaqF (8c)

vP
vY
¼ �b

�
sf þ

1
Kr

�
Vp þ sf Vf þ RaqF (8d)

V2qf ¼ f

�
Uf

vqf

vX
þ Vf

vqf

vY

�
þ H

�
qf � qp

�
(9a)

V2qp ¼ ð1� fÞ
�

Up
vqp

vX
þ Vp

vqp

vY

�
þ gH

�
qp � qf

�
(9b)

where Ra is the Rayleigh number for a porous medium, sf is the f-
phase momentum parameter, Kr is the permeability ratio, H is the
dimensionless interface-phase heat transfer parameter, g is the
modified thermal conductivity ratio, b is the modified thermal
capacity ratio and s is a dimensionless parameter and they are
defined as follows:

Ra ¼
rF gKf

~bðTh� T0ÞL
mfkf =ðrcÞf

; sf ¼
2Kf

m
; b ¼

ð1�fÞkpðrcÞf
fkf ðrcÞp

Kr ¼
Kp

Kf
; H ¼ hL2

fkf
; g ¼

fkf

ð1�fÞkp
; s ¼ f

fþð1�fÞ3 ½10�

Further, we introduce the stream functions jf and jp defined in
the usual way as follows:
Uf ¼
vjf

vY
; Vf ¼ �

vjf

vX
(11a)

Up ¼
vjp

vY
; Vp ¼ �

vjp

vX
(11b)

Eliminating the pressure P from Eqs. (8) and using (11), we
obtain

�
1þ sf

�
V2jf � sf bV2jp ¼ �Ra

�
s
vqf

vX
þ ð1� sÞvqp

vX

	
(12a)

b

�
sf þ

1
Kr

�
V2jp � sf V2jf ¼ �Ra

�
s
vqf

vX
þ ð1� sÞvqp

vX

	
(12b)

V2qf ¼ f

�
vjf

vY

vqf

vX
�

vjf

vX

vqf

vY

�
þ H

�
qf � qp

�
(13a)

V2qp ¼ ð1� fÞ
�

vjp

vY
vqp

vX
�

vjp

vX
vqp

vY

�
þ gH

�
qp � qf

�
(13b)

which are subject to the boundary conditions

jf ¼ 0; jp ¼ 0; qf ¼
1
2
; qp ¼

1
2

at X ¼ 0

jf ¼ 0; jp ¼ 0; qf ¼�
1
2
; qp ¼�

1
2

at X ¼ 1

jf ¼ 0; jp ¼ 0;
vqf

vY
¼ 0;

vqp

vY
¼ 0 at Y ¼ 0 and Y ¼ 1

(14)

The physical quantities of interest are the local Nusselt
numbers Nuf of the f-phase (fracture phase) and Nup of the p-
phase (porous phase), respectively, at the hot wall which are
defined as follows:

Nuf ¼
Lqwf

kf ðTw � T0Þ
; Nup ¼

Lqwp

kpðTw � T0Þ
(15)

where qwf and qwp are the heat fluxes of the f- and p-phases at the
hot wall and which are given by
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Fig. 2. Streamlines (a and b) and isotherms (c and d) for Ra¼ 102, H¼ 0.05, g ¼ 1.
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Fig. 3. Streamlines (a and b) and isotherms (c and d) for Ra¼ 102, H¼ 1, g ¼ 10: (a, c) f-phase and (b, d) p-phase.
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Fig. 4. Streamlines (a and b) and isotherms (c and d) for Ra¼ 102, H¼ 1, g ¼ 0:01: (a, c) f-phase and (b, d) p-phase.
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Fig. 5. Streamlines (a and b) and isotherms (c and d) for Ra¼ 102, H¼ 10, g ¼ 2: (a, c) f-phase and (b, d) p-phase.
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Fig. 6. Streamlines (a and b) and isotherms (c and d) for Ra¼ 102, H¼ 10, g ¼ 10: (a, c) f-phase and (b, d) p-phase.
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Fig. 7. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, g ¼ 1, H¼ 0.05: (a, c) f-phase and (b, d) p-phase.
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Fig. 8. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, g ¼ 1, H¼ 500: (a, c) f-phase and (b, d) p-phase.
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Fig. 9. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, g ¼ 10, H¼ 1: (a, c) f-phase and (b, d) p-phase.
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Fig. 10. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, g ¼ 10, H¼ 50: (a, c) f-phase and (b, d) p-phase.
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Fig. 11. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, H¼ 1, g ¼ 0:01: (a, c) f-phase and (b, d) p-phase.
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Fig. 12. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, H¼ 10, g ¼ 2: (a, c) f-phase and (b, d) p-phase.
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Fig. 13. Streamlines (a and b) and isotherms (c and d) for Ra¼ 103, H¼ 10, g ¼ 10: (a, c) f-phase and (b, d) p-phase.
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qwf ¼ �kf

�
vTf

vx

�
x¼0

; qwp ¼ �kp

�
vTp

vx

�
x¼0

(16)

Using variables from (5), we then obtain from (15) and (16)

Nuf ¼ �
�

vqf

vX

�
X¼0

; Nup ¼ �
�

vqp

vX

�
X¼0

(17)

The mean Nusselt numbers of the f- and p-phases from the heated
wall are given by

Nuf ¼
Z 1

0
Nuf dY ; Nup ¼

Z 1

0
Nup dY (18)

3. Numerical method

To obtain the numerical solution of Eqs. (12) and (13) a central
finite-difference scheme was used and the system of discretized
equations has been solved using a Gauss–Seidel iteration tech-
nique. The unknowns j and q were calculated iteratively until the
following criterion of convergence was fulfilledX

i;j

jcnewði; jÞ � coldði; jÞj=
X

i;j

jcnewði; jÞj � 3 (19)

wherec represents the temperature or the stream function and 3 is
the convergence criterion. In all the results presented in this paper,
3 ¼ 10�7 was found to be sufficiently small such that any smaller
value produced results which were graphically the same. In order
to choose the size of the grid, accuracy tests using the finite-
difference method and Richardson extrapolation [15] for mesh
sensitivity analysis were performed for Ra¼ 103 using four sets of
grids: 21�21, 41�41, 81�81 and 161�161 as shown in Table 1.
Reasonably good agreement was found between the 81�81 and
161�161 grids and therefore the grid used in this problem was
81�81 and these give accurate results for the values of Ra
considered. Due to lack of suitable results in the literature per-
taining to the present configuration, the obtained numerical results
have been validated against the existing results for the case of
natural convection heat transfer problem in a differentially heated
square cavity filled with a regular (monodisperse) porous medium
(the case sf ¼ 0, Kr¼ 0, s ¼ 1, qf ¼ qp and f ¼ 1). The obtained
numerical results for the average Nusselt number Nuf ¼ Nup ¼ Nu
are compared in Table 2 with those given by different authors from
the open literature. As it can be seen the obtained result shows
good agreement with the results reported by the mentioned
authors.

Also, in rectangular enclosures, contours of streamlines and
isotherms are almost the same as the ones given in the literature.
However, these results are not presented here in order to save
space. The same algorithm as that used in the present paper was
recently tested for the problem of natural convection in a rectan-
gular enclosure filled with a regular (monodisperse) porous
medium under the influence of an inclined magnetic field by
Grosan et al. [23]. Therefore, we are confident that the results
reported in the present paper are accurate.

4. Results and discussions

Steady natural convection in a square cavity filled with a bidis-
perse porous medium (BDPM) has been numerically studied for the
value of the Rayleigh number Ra¼ 102 and 103. The values of the
parameters b – the modified thermal capacity ratio, sf – the f-phase
momentum transfer, permeability ratio parameter Kr and s are
b ¼ 10, sf ¼ 1:0, Kr ¼ 0:001, s ¼ 0:625. We consider the value of
f ¼ 0:5, which corresponds to the sand [24] while the values of
modified thermal conductivity ratio parameter g and inter-phase
heat transfer parameter H vary in the ranges 0 � g � 10 and
0 � H � 500. We mention that the values of the parameters b, sf , Kr

and s are those considered by Nield and Kuznetsov [8], and Rees
et al. [9]. However, only small values of the parameters sf , Kr and s
were considered as this is the situation that usually exists in
geophysical and engineering applications. The results for the flow
field with streamlines, temperature field by isotherms and heat
transfer by local and mean Nusselt numbers are presented for both
the f- and p-phases in Figs. 2–15. Figs. 2–6 show streamlines (on the
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left) and isotherms (on the right) for Ra¼ 102 and Figs. 7–13 show
results for Ra¼ 103. Figs. 14 and 15 illustrate results for the Nusselt
number. It can be observed that for the value of Ra considered, the
flow is unicellular and isotherms are almost parallel to each other.
In addition, a nearly centrally located cell is observed. For small
values of g isotherms are nearly parallel with the walls of the cavity
and this exhibits nearly pure conduction characteristics. However,
for larger values of H and g the effect of convection also influences
the flow, that is, the distributions of the isotherms are not parallel
with the walls of the cavity. From the distribution of streamlines in
Figs. 7–13, a boundary layer type of flow is observed at Ra¼ 103 on
both vertical walls. From the distribution of isotherms for the same
Ra, on the other hand, thermal boundary layer is observed on
vertical walls.

Further, Figs. 14 and 15 illustrate the variation of the mean
Nusselt numbers of the f- and p-phases from the heated wall of the
cavity, Nuf and Nup, with the parameters H and g for Ra¼ 103,
b ¼ 10, sf ¼ 1:0, Kr¼ 0.001, s ¼ 0:625 and f ¼ 0:5. It is seen from
these figures that similar to the case of the local thermal non-
equilibrium (LTNE) model, for a bidisperse porous medium there is
also a substantial difference between the heat transfer rates of the f-
and p-phases when values of H and g are small. This is not surprising
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Fig. 15. Variation of the mean Nusselt numbers with g for some values of H.
since H is a measure of the way in which heat is transferred between
the phases and g is a measure of thermal conductivity ratio between
the phases. As H and g increase, the heat transfer between the f- and
p-phases occurs more rapidly and this is reflected by the increasing
similarity between the heat transfer rates and thermal conductivity
of the two phases. Thus, large values of H and g reduce the non-
equilibrium effects. However, for small values of H and g the values
of Nup are much lower than those of Nuf .

Finally, it is worth noticing that the present results for the BDPM
illustrated in these figures show the general trend of those pre-
sented by Baytas and Pop [19] for the local thermally non-equi-
librium (LTNE) model.

5. Conclusions

The present paper extends the classical problem of steady Darcy
free convection in a square cavity filled with a porous medium to
the case of a bidisperse porous medium (BDPM) by following the
recent model proposed by Nield and Kuznetsov [8] and Rees et al.
[9]. The transformed partial differential equations in terms of the
dimensionless stream function and temperature are solved
numerically using a finite-difference method for some values of the
governing parameters when the Rayleigh number Ra is equal to 102

and 103, respectively. The numerical results illustrate features
concerning the effects of a modified thermal capacity ratio
parameter, the f-phase momentum transfer parameter, perme-
ability ratio parameter,s, modified thermal conductivity ratio
parameter g and inter-phase heat transfer parameter H. Detailed
results for the flow field, temperature distribution and heat transfer
rates have been presented in terms of streamlines, isotherms and
mean Nusselt number. The main conclusions of the present analysis
are as follows:

C the conduction is the dominant mode of heat transfer when
the values of Ra increase from 102 to 103 and the convection
effect influences the flow when the values of H and g increase,

C the dimension of the central cells increases with the increase
of Ra, and

C the orientation of the central cells changes with the values of
H and g.

Finally, it should be pointed out that a number of aspects that
could form the subject of further studies of this problem can be
raised as those mentioned by Nield and Kuznetsov [8], and Rees
et al. [10] in the section ‘Conclusions’ of their papers. Thus, it
appears that the number of parameters in the present analysis
cannot be reduced beyond 7. From our numerical procedure it was
not possible to solve Eqs. (12)–(14) for any values of the governing
parameters. Therefore, we are confident that the BDPM system is
a distinctive system that is well worth further study. As far as we
are aware, there are only just a few published papers on the BDPM
model.
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